Electron-phonon scattering limited hole mobility at room temperature in a MoS 2 monolayer: first-principles calculations.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2019)

引用 18|浏览4
暂无评分
摘要
Based on first-principles calculations and iterative solution of the Boltzmann transport equation, we theoretically study the room temperature mobility (RTM) of a valence band hole in a MoS2 monolayer (ML) limited by electron-phonon (e-ph) scattering. The hole mobility obtained by us is 26.0 cm(2) V-1 s(-1) at 300 K. This is a value much closer to the experimental result (about 40.0 cm(2) V-1 s(-1)). In contrast, the semi-empirical estimate based on the deformational potential (DP) model in previous literature gave a value of 200.5 cm(2) V-1 s(-1), far away from the experimental data. By a detailed analysis, we find that unlike the case of conduction band electrons, the intervalley scattering realized by longitudinal acoustic (LA) phonons plays a dominant role in influencing the hole mobility. And this is the main reason for the DP model failing to give a quantitative estimate of the hole RTM in MoS2-ML.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要