Enhanced spin-orbit torque via interface engineering in Pt/CoFeB/MgO heterostructures

APL MATERIALS(2018)

引用 52|浏览52
暂无评分
摘要
Spin-orbit torque facilitates efficient magnetization switching via an in-plane current in perpendicularly magnetized heavy metal/ferromagnet heterostructures. The efficiency of spin-orbit-torque-induced switching is determined by the charge-to-spin conversion arising from either bulk or interfacial spin-orbit interactions, or both. Here, we demonstrate that the spin-orbit torque and the resultant switching efficiency in Pt/CoFeB systems are significantly enhanced by an interfacial modification involving Ti insertion between the Pt and CoFeB layers. Spin pumping and X-ray magnetic circular dichroism experiments reveal that this enhancement is due to an additional interface-generated spin current of the nonmagnetic interface and/or improved spin transparency achieved by suppressing the proximity-induced moment in the Pt layer. Our results demonstrate that interface engineering affords an effective approach to improve spin-orbit torque and thereby magnetization switching efficiency.
更多
查看译文
关键词
pt/cofeb/mgo heterostructures,spin–orbit torque
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要