Shape optimization of wave energy converters for broadband directional incident waves

Ocean Engineering(2019)

引用 55|浏览16
暂无评分
摘要
Here, through a systematic methodology and the use of high performance computing, we calculate the optimum shape for a wave energy converter under the action of incident waves of (i) monochromatic unidirectional, (ii) monochromatic directional, (iii) polychromatic unidirectional and (iv) polychromatic directional (with both directional symmetry and asymmetry). As a benchmark for our study, without loss of generality, we consider a submerged planar pressure differential wave energy converter, and use the Genetic Algorithm to search through a wide range of shapes. A new parametric description of absorber shape based on Fourier decomposition of geometrical shapes is introduced, and for each shape hydrodynamic coefficients are calculated, optimum power take-off parameters are obtained, and overall efficiency is determined. We show that an optimum geometry of the absorber plate can absorb significantly higher energy (in some cases few times higher) when compared to a circular shape of the same area. Specifically, for a unidirectional incident wave, the optimum shape, as expected, is obtained to be the most elongated shape. For directional incident waves, a butterfly-shape is the optimum geometry whose details depend on not only the amplitude and direction of incident wave components, but also the relative phases of those components. For the latter effect, we find an optimally averaged profile through a statistical analysis.
更多
查看译文
关键词
Wave energy conversion,Shape optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要