Introducing along-track error correlations for altimetry data in a regional ocean prediction system

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY(2019)

Cited 13|Views17
No score
Abstract
Because of the systematic error in the processing of altimetry data, sea level anomaly (SLA) observation errors are likely affected by nonnegligible spatial correlations. To account for these, we exploit the synergy of altimetry data with in situ profiles from gliders, piloted to follow the altimetry tracks during the Long-Term Glider Mission for Environmental Characterization 2017 (LOGMEC17) observational campaign in the Ligurian Sea. The assimilation of along-track unfiltered sea level anomalies in a regional ocean analysis and forecast system is consequently optimized by means of introducing spatial correlations for the SLA observation errors. In particular, collocated data of glider and altimetry are used to derive an along-track error covariance model for the sea level anomaly assimilation, assuming that most of the covariance behavior versus separation distance stems from altimetry. Spatial scales of the altimetry error are found to have a correlation radius of about 12 km for the dataset utilized in the Ligurian Sea, using a simple Gaussian shape for the error correlation, shorter than the correlation radius found through assimilation output diagnostics. A variational data assimilation system is modified to relax the usual assumption of uncorrelated altimetry observation errors, thus allowing for along-track error correlations. Its implementation provides promising results in the regional ocean prediction system, outperforming in most verification skill scores the use of uncorrelated observational errors without compromising the analysis scheme efficiency.
More
Translated text
Key words
Data processing,In situ oceanic observations,Satellite observations,Error analysis,Variational analysis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined