Direct, Selective Production of Aromatic Alcohols from Ethanol Using a Tailored Bifunctional Cobalt–Hydroxyapatite Catalyst

ACS Catalysis(2019)

Cited 55|Views31
No score
Abstract
Aromatic alcohols are essential components of many solvents, coatings, plasticizers, fine chemicals, and pharmaceuticals. Traditional manufacturing processes involving the oxidation of petroleum-derived aromatic hydrocarbons suffer from low selectivity due to facile overoxidation reactions which produce aromatic aldehydes, acids, and esters. Here we report a Co-containing hydroxyapatite (HAP) catalyst that converts ethanol directly to methylbenzyl alcohols (MB-OH, predominantly 2-MB-OH) at 325 degrees C. The dehydrogenation of ethanol to acetaldehyde, which is catalyzed by Co2+, has the highest reaction barrier. Acetaldehyde undergoes rapid, HAP-catalyzed condensation and forms the key intermediate, 2-butenal, which yields aromatic aldehydes through self-condensation and then MB-OH via hydrogenation. In the presence of Co2+, 2-butenal is selectively hydrogenated to 2-butenol. This reaction does not hinder aromatization because cross-coupling between 2-butenal and 2-butenol leads directly to MB-OH without passing through MB=O. Using these insights a dual-bed catalyst configuration was designed for use in a single reactor to improve the aromatic alcohol selectivity. Its successful use supports the proposed reaction mechanism.
More
Translated text
Key words
ethanol,aromatic alcohols,cobalt-hydroxyapatite,dehydrogenation,dehydrocyclization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined