谷歌浏览器插件
订阅小程序
在清言上使用

Seismic Velocity Structure of Seaward-Dipping Reflectors on the South American Continental Margin

81st EAGE Conference and Exhibition 2019(2019)

引用 13|浏览8
暂无评分
摘要
Seaward dipping reflectors (SDRs) are a key feature within the continent to ocean transition zone of volcanic passive margins. Here we conduct an automated pre-stack depth-migration imaging analysis of commercial seismic data from the volcanic margins of South America. The method used an isotropic, ray-based approach of iterative velocity model building based on the travel time inversion of residual pre-stack depth migration move-out. We find two distinct seismic velocity patterns within the SDRs. While both types show a general increase in velocity with depth consistent with expected compaction and alteration/metamorphic trends, those SDRs that lie within faulted half grabens also have high velocity zones at their down-dip ends. The velocity anomalies are generally concordant with the reflectivity and so we attribute them to the presence of dolerite sills that were injected into the lava pile. The sills therefore result from late-stage melt delivery along the large landward-dipping faults that bound them. In contrast the more outboard SDRs show no velocity anomalies, are more uniform spatially and have unfaulted basal contacts. Our observations imply that the SDRs document a major change in rift architecture, with magmatism linked with early extension and faulting of the upper brittle crust transitioning into more organised, dike-fed eruptions similar to seafloor spreading.
更多
查看译文
关键词
continental breakup,volcanic passive margins,seaward-dipping reflectors,tomographic inversion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要