Catalytic deoxygenation of vapors obtained from ablative fast pyrolysis of wheat straw using mesoporous HZSM-5

Fuel Processing Technology(2019)

引用 32|浏览4
暂无评分
摘要
Steam treated HZSM-5 with different Si/Al ratios were tested as catalysts for the upgrading of wheat straw pyrolysis vapors and their performance was compared to hierarchical counterparts, which were prepared by desilication followed by acid washing. Pyrolysis vapors were generated in an ablative system, hot gas filtered, and upgraded in an ex-situ catalyst bed to remove oxygen functionalities and reduce the oils' total acid number (TAN). Besides elemental analysis and TAN, the collected liquids were analyzed for water, chemical composition by gas chromatography mass spectrometry with flame ionization detection (GC–MS/FID), size exclusion chromatography (SEC), thermogravimetric analysis (TGA), and selectively by 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear single-quantum correlation (2D HSQC) NMR. Hierarchical and conventional catalysts were analyzed with X-ray fluorescence (XRF), ammonia temperature-programmed desorption (NH3-TPD) and ethylamine TPD, N2 and Ar-physisorption, transmission electron microscopy (TEM) and X-ray diffraction (XRD) to investigate changes induced by the desilication process. In addition, samples were analyzed after several reaction and regeneration cycles to investigate catalyst stability. The hierarchical samples showed an increased coking propensity compared to their parent version. The introduction of mesopores after desilication of HZSM-5 with molar Si/Al ratios of 29 and 39 lead to prolonged activity in deoxygenation and improved carbon recovery in the collected oil fractions compared to the parent counterparts. The results indicate that mild deoxygenation may be a viable way of pretreating pyrolysis oil before co-processing with fossil oil in refineries.
更多
查看译文
关键词
Zeolites,Biomass,Heterogeneous catalysis,Desilication,Fast pyrolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要