显著性驱动的局部相似拟合模型分割算法研究

计算机工程与应用(2018)

Cited 0|Views21
No score
Abstract
灰度不均匀和噪声图像的分割是计算机视觉中的难点。现有的活动轮廓模型尽管能够取得较好的分割效果,但仍然对噪声图像分割效果不理想,初始轮廓曲线的选取敏感,优化易陷入局部极小导致演化速度慢等问题。针对该问题,首先使用局部区域灰度的均值和方差拟合高斯分布,构建新的能量泛函,均值和方差随着能量的最小化过程而变化,从而增强了灰度不均匀和噪声图像的分割能力。此外,结合视觉显著性检测算法获取待分割目标的先验形状信息,并自适应地创建水平集函数,从而降低了初始轮廓位置敏感性及计算时间复杂度,实现全自动的图像分割。实验结果证明,提出的算法可以用于灰度不均匀和噪声图像分割,并取得了较好的分割性能,消除了算法对初始轮廓位置敏感性,减少了迭代次数。
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined