WITHDRAWN: Regulatory mechanism of NOV/CCN3 in the inflammation and apoptosis of lung epithelial alveolar cells upon lipopolysaccharide stimulation.

MOLECULAR MEDICINE REPORTS(2020)

引用 7|浏览14
暂无评分
摘要
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. Pulmonary epithelial cell apoptosis has been shown to accelerate the progression of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and is the leading cause of mortality in patients with ALI/ARDS. Nephroblastoma overexpressed (NOV; also known as CCN3), an inflammatory modulator, is reported to be a biomarker in ALI. Using an LPS-induced ALI model, we investigated the expression of CCN3 and its possible molecular mechanism involved in lung alveolar epithelial cell inflammation and apoptosis. Our data revealed that LPS treatment greatly increased the level of CCN3 in human lung alveolar type II epithelial cells (A549 cell line). The A549 cells were also transfected with a specific CCN3 small interfering RNA (siRNA). CCN3 knockdown not only largely attenuated the expression of inflammatory cytokines, interleukin (IL)-1 beta and transforming growth factor (TGF)-beta 1, but also reduced the apoptotic rate of the A549 cells and altered the expression of apoptosis-associated proteins (Bcl-2 and caspase-3). Furthermore, CCN3 knockdown greatly inhibited the activation of nuclear factor (NF)-kappa B p65 in the A549 cells, and TGF-beta/p-Smad and NF-kappa B inhibitors significantly decreased the expression level of CCN3 in A549 cells. In conclusion, our data indicate that CCN3 knockdown affects the expression of downstream genes through the TGF-beta/p-Smad or NF-kappa B pathways, leading to the inhibition of cell inflammation and apoptosis in human alveolar epithelial cells.
更多
查看译文
关键词
CCN3,apoptosis,inflammation,acute lung injury,lung epithelial cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要