Dipole Oscillation Of A Trapped Bose-Fermi-Mixture Gas In Collisionless And Hydrodynamic Regimes

arxiv(2020)

引用 3|浏览6
暂无评分
摘要
Dipole oscillation is studied in a normal phase of a trapped Bose-Fermi-mixture gas composed of single-species bosons and single-species fermions. Applying the moment method to the linearized Boltzmann equation, we derive a closed set of equations of motion for the center-of-mass position and momentum of both components. By solving the coupled equations, we reveal the behavior of dipole modes in the transition between the collisionless regime and the hydrodynamic regime. We find that two oscillating modes in the collisionless regime have distinct fates in the hydrodynamic regime: one collisionless mode shows a crossover to a hydrodynamic in-phase mode, and the other collisionless mode shows a transition to two purely damped modes. The temperature dependence of these dipole modes are also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要