Energy dissipation in functionally two-dimensional phase transforming cellular materials

SCIENTIFIC REPORTS(2019)

引用 23|浏览9
暂无评分
摘要
Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.
更多
查看译文
关键词
Mechanical engineering,Mechanical properties,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要