Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans

SCIENTIFIC REPORTS(2019)

引用 181|浏览36
暂无评分
摘要
Microbial-derived short-chain fatty acids (SCFA) acetate, propionate and butyrate may provide a link between gut microbiota and whole-body insulin sensitivity (IS). In this cross-sectional study (160 participants, 64% male, BMI: 19.2–41.0 kg/m 2 , normal or impaired glucose metabolism), associations between SCFA (faecal and fasting circulating) and circulating metabolites, substrate oxidation and IS were investigated. In a subgroup (n = 93), IS was determined using a hyperinsulinemic-euglycemic clamp. Data were analyzed using multiple linear regression analysis adjusted for sex, age and BMI. Fasting circulating acetate, propionate and butyrate concentrations were positively associated with fasting GLP-1 concentrations. Additionally, circulating SCFA were negatively related to whole-body lipolysis (glycerol), triacylglycerols and free fatty acids levels (standardized (std) β adjusted (adj) −0.190, P = 0.023; std β adj −0.202, P = 0.010; std β adj −0.306, P = 0.001, respectively). Circulating acetate and propionate were, respectively, negatively and positively correlated with IS (M-value: std β adj −0.294, P < 0.001; std β adj 0.161, P = 0.033, respectively). We show that circulating rather than faecal SCFA were associated with GLP-1 concentrations, whole-body lipolysis and peripheral IS in humans. Therefore, circulating SCFA are more directly linked to metabolic health, which indicates the need to measure circulating SCFA in human prebiotic/probiotic intervention studies as a biomarker/mediator of effects on host metabolism.
更多
查看译文
关键词
Gastrointestinal hormones,Metabolic syndrome,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要