Short hairpin RNAs targeting M and N genes reduce replication of porcine deltacoronavirus in ST cells

Virus Genes(2019)

引用 10|浏览30
暂无评分
摘要
Porcine deltacoronavirus (PDCoV) is a recently identified coronavirus that causes intestinal diseases in neonatal piglets with diarrhea, vomiting, dehydration, and post-infection mortality of 50–100%. Currently, there are no effective treatments or vaccines available to control PDCoV. To study the potential of RNA interference (RNAi) as a strategy against PDCoV infection, two short hairpin RNA (shRNA)-expressing plasmids (pGenesil-M and pGenesil-N) that targeted the M and N genes of PDCoV were constructed and transfected separately into swine testicular (ST) cells, which were then infected with PDCoV strain HB-BD. The potential of the plasmids to inhibit PDCoV replication was evaluated by cytopathic effect, virus titers, and real-time quantitative RT-PCR assay. The cytopathogenicity assays demonstrated that pGenesil-M and pGenesil-N protected ST cells against pathological changes with high specificity and efficacy. The 50% tissue culture infective dose showed that the PDCoV titers in ST cells treated with pGenesil-M and pGenesil-N were reduced 13.2- and 32.4-fold, respectively. Real-time quantitative RT-PCR also confirmed that the amount of viral RNA in cell cultures pre-transfected with pGenesil-M and pGenesil-N was reduced by 45.8 and 56.1%, respectively. This is believed to be the first report to show that shRNAs targeting the M and N genes of PDCoV exert antiviral effects in vitro, which suggests that RNAi is a promising new strategy against PDCoV infection.
更多
查看译文
关键词
Porcine deltacoronavirus,RNA interference,Short hairpin RNA,Nucleocapsidgene,Swine testicular cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要