Structural Perturbations of Rhodopseudomonas palustris Form II RuBisCO Mutant Enzymes That Affect CO 2 Fixation.

BIOCHEMISTRY(2019)

引用 5|浏览15
暂无评分
摘要
The enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its central role in capturing atmospheric CO2 via the Calvin-Benson-Bassham (CBB) cycle have been well-studied. Previously, a form II RuBisCO from Rhodopseudomonas palustris, a facultative anaerobic bacterium, was shown to assemble into a hexameric holoenzyme. Unlike previous studies with form II RuBisCO, the R. palustris enzyme could be crystallized in the presence of the transition state analogue 2-carboxyarabinitol 1,5-bisphosphate (CABP), greatly facilitating the structure function studies reported here. Structural analysis of mutant enzymes with substitutions in form II-specific residues (Ile165 and Met331) and other conserved and semiconserved residues near the enzyme's active site identified subtle structural interactions that may account for functional differences between divergent RuBisCO enzymes. In addition, using a distantly related aerobic bacterial host, further selection of a suppressor mutant enzyme that overcomes negative enzymatic functions was accomplished. Structure function analyses with negative and suppressor mutant RuBisCOs highlighted the importance of interactions involving different parts of the enzyme's quaternary structure that influenced partial reactions that constitute RuBisCO's carboxylation mechanism. In particular, structural perturbations in an intersubunit interface appear to affect CO2 addition but not the previous step in the enzymatic mechanism, i.e., the enolization of substrate ribulose 1,5-bisphosphate (RuBP). This was further substantiated by the ability of a subset of carboxylation negative mutants to support a previously described sulfur-salvage function, one that appears to rely solely on the enzyme's ability to catalyze the enolization of a substrate analogous to RuBP.
更多
查看译文
关键词
enzymes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要