Nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633 under aerobic conditions.

Journal of environmental radioactivity(2019)

Cited 23|Views4
No score
Abstract
Nonreductive biomineralization of uranium is a promising methodology for the removal of uranium contamination as it provides stable products and wide applications. However, the efficiency of mineralization has become a major obstacle for the removal of uranium contamination by this technology, and the mineralizing process still remains largely obscure. To solve this problem in a practical way, we report a fast nonreductive biomineralization process of uranium by Bacillus subtilis ATCC-6633, a widespread bacterium with environmentally-friendly applications. In this system, we demonstrated that the size and crystallization degree of the obtained nonreduced biomineralized products is significantly superior to the results reported in the literature under comparable conditions. Meanwhile, combined with SEM, TEM, and FT-IR, a mineralization process of uranium transfer from the outer surface of the Bacillus subtilis ATCC-6633 to the internal has been clearly observed, which was accompanied by the evolution of amorphous U(VI) to crystalline uramphite. This work uncovers whole-process insights into the nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633, paving a new way for the rapid and sustained removal of uranium contamination.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined