Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation.

Ecotoxicology and Environmental Safety(2019)

Cited 32|Views8
No score
Abstract
Presence of cadmium (Cd) in food poses serious risks to human health. Understanding the effects of zinc (Zn) on Cd absorption by crops could help provide a theoretical basis for the treatment with Zn on contaminated soils. In this study, two wheat varieties, differing in grain-Cd accumulation ability (L979, a Cd low-accumulation variety, and H27, a high-accumulation variety) were selected to investigate the effect of Zn addition on Cd toxicity. Cd was applied to nutrient solutions at 0 and 10 μM, and added Zn were 0, 50 and 100 μM. Zn supplements alleviated decreases in biomass induced by Cd toxicity for both varieties, and both varieties had different reduced concentrations of Cd in their shoots. Application of 50 μM Zn to H27 resulted in a 17% decrease in Cd concentrations. When treated with 100 μM Zn, only L979 showed a reduction in Cd concentration. The higher proportion of Cd in the soluble fraction was found in L979. In addition, ion-selective scanning at the root-surface indicated that Zn supplements reduced net root Cd2+ flux by 55% for L979, and 69% for H27. These mitigating effects of Zn in both varieties involved mechanisms related to photosynthesis, root growth, and antioxidant production. Additionally, both Zn available in the medium and absorbed in plant tissue causes antagonistic effects on Cd absorption for wheat. It seemed that vacuolar compartmentation could contribute Cd detoxification especially for low accumulation variety.
More
Translated text
Key words
Cadmium,Zinc,Wheat,Root Cd2+ flux,Photosynthetic parameters,Antioxidant capability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined