Chrome Extension
WeChat Mini Program
Use on ChatGLM

Proteomic Analysis of Rhizobium favelukesii LPU83 in Response to Acid Stress.

JOURNAL OF PROTEOME RESEARCH(2019)

Cited 13|Views15
No score
Abstract
Acid soils constitute a severe problem for leguminous crops mainly through a disturbance in rhizobium legume interactions. Rhizobium favelukesii-an acid-tolerant rhizobium able to nodulate alfalfa-is highly competitive for nodule occupation under acid conditions but inefficient for biologic nitrogen fixation. In this work, we obtained a general description of the acid-stress response of R. favelukesii LPU83 by means of proteomics by comparing the total proteome profiles in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. Thus, a total of 336 proteins were identified with a significant differential expression, 136 of which species were significantly overexpressed and 200 underexpressed in acidity. An in silico functional characterization with those respective proteins revealed a complex and pleiotropic response by these rhizobia involving components of oxidative phosphorylation, glutamate metabolism, and peptidoglycan biosynthesis, among other pathways. Furthermore, a lower permeability was evidenced in the acid-stressed cells along with several overexpressed proteins related to gamma-aminobutyric acid metabolism, such as the gene product of livK, which gene was mutated. This mutant exhibited an acid-sensitive phenotype in agreement with the proteomics results. We conclude that both the gamma-aminobutyric acid metabolism and a modified cellular envelope could be relevant to acid tolerance in R. favelukesii.
More
Translated text
Key words
acid stress,rhizobium,proteomics,GABA,alfalfa,acid soils,livK,membrane permeability,FBN,acid tolerance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined