Development of multi-ARMS-qPCR method for detection of hookworms from cats and dogs.

Parasitology International(2019)

Cited 3|Views19
No score
Abstract
Hookworms are blood-sucking nematodes that infect dogs, cats, and humans, causing iron-deficiency anemia, abdominal pain, diarrhea, and skin inflammation. Amplification refractory mutation system (ARMS) is a modified technology based on allele-specific PCR, which is widely used in mutation detection and genotyping. However, no data about ARMS application in hookworm detection. This study aims to establish a multi-ARMS-qPCR method for the detection of three hookworm species from dogs and cats. A universal forward primer and three specific primers (ARMS-Cey, ARMS-Can, and ARMS-Tub) were designed based on the three ITS SNPs (ITS250, ITS78 and ITS153) of Ancylostoma ceylanicum, A. caninum, and A. tubaeforme, respectively. The results showed that the three designed ARMS primers generated specific melting curves for the three hookworms' standard plasmids. The melting temperature (Tm) values were 88.40 °C (A. ceylanicum), 83.15 °C (A. caninum), and 85.65 °C (A. tubaeforme), with good reproducibility of intra- and inter-assay. No amplification was observed with other intestinal parasites. The limit of detection using the established technique was 1, 2, and 104 egg per gram feces (EPG) for A. caninum, A. tubaeforme and A. ceylanicum, respectively. Using multi-ARMS-qPCR assay, 17 out of 50 fecal samples were positive for hookworms, including ten single and seven mixed infections, and single infections were quantified. In conclusion, the used multi-ARMS-qPCR method has the advantages of high efficiency, sensitivity, specificity, and quantitative analysis and can be used for the clinical detection, epidemiological investigation, and zoonotic risk assessment of canine and feline hookworms.
More
Translated text
Key words
Hookworms,Dogs,Cats,Multi-ARMS-qPCR,SNP,ITS
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined