Nanocrystal Formulation Improves Vaginal Delivery of CSIC for HIV Prevention

AAPS PharmSciTech(2019)

引用 14|浏览18
暂无评分
摘要
5-Chloro-3-phenylsulfonylindole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) with potential for use in topical prophylaxis against HIV transmission. However, the hydrophobic nature of CSIC limits its administration through vaginal route. In this study, we developed nanocrystals of CSIC to potentially improve the aqueous solubility and intracellular uptake of CSIC in vitro and in vivo . CSIC nanocrystals were manufactured and stabilized with Pluronic F98 and hydroxypropyl methylcellulose E5. Transmission electron microscopy showed CSIC nanocrystals to be needle-like. Dynamic light scattering measurements showed a hydrodynamic size of 243 nm (polydispersity index < 0.3) and near neutral surface charge (− 7.8 mV). Particle size was maintained for at least 7 days in the liquid state and for at least 5 months after lyophilization. Drug content in the CSIC nanocrystal formulation (nanosuspension) was 0.8 mg/mL, which is 1000 times higher than the aqueous solubility of CSIC. In vitro release study showed that over 90% of CSIC was released from the nanocrystal formulation in a linear fashion over a period of 4 days. Importantly, CSIC nanocrystals showed equivalent cell-based anti-HIV activity (EC 50 ~ 1 nM) as that of non-formulated drug. In vitro studies demonstrated rapid macrophage uptake of CSIC nanocrystals via both energy-dependent (endocytosis) and independent processes. In vivo studies in Swiss Webster female mice showed that the nanocrystal formulation significantly improved CSIC delivery to mouse cervicovaginal tissues following intravaginal instillation. In summary, nanocrystals are a promising formulation approach for topical delivery of CSIC for protection against HIV sexual transmission.
更多
查看译文
关键词
HIV, microbicide, female genital tract, nanocrystals, lymph nodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要