Many-Body Dynamical Localization And Thermalization

PHYSICAL REVIEW A(2020)

引用 4|浏览4
暂无评分
摘要
We show that a quantum dynamical localization effect can be observed in a generic thermalization process of two weakly coupled chaotic subsystems. Specifically, our model consists of the minimal experimentally relevant subsystems that exhibit chaos, which are 3-site Bose-Hubbard units. Due to the high dimensionality of the composite 6-site system, the quantum localization effect is weak and cannot be resolved merely by the breakdown of quantum-to-classical correspondence. Instead, we adopt an intrinsic definition of localization as the memory of initial conditions, which is not related to the underlying classical dynamics. We discuss the dynamics in the chaotic sea, and in the vicinity of the mobility edge, beyond which ergodization is suppressed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要