Prenatal vanadium exposure, cytokine expression, and fetal growth: A gender-specific analysis in Shanghai MCPC study.

The Science of the total environment(2019)

Cited 14|Views17
No score
Abstract
Increasing evidence supports that maternal exposure to vanadium (V) is associated with adverse birth outcomes including preterm birth and low birth weight. However, the effect of V exposure on intrauterine fetal growth and the underlying biological mechanism are still unclear. The present study includes 227 mother-infant pairs from the Shanghai Maternal-Child Pairs Cohort to assess the gender-specific effect of intrauterine V exposure on fetal growth and related cytokines. Maternal blood samples were collected to measure V concentration and biomarkers of growth. We used multiple linear regression to evaluate the gender-specific effect of prenatal V exposure on birth parameter and growth-related cytokines. Mixed-effect models were applied to assess the non-linear association between gestational V exposure and intrauterine fetal growth. Covariates adjusted in the regression models as potential confounders including maternal age, pre-pregnancy body mass index, gestational weeks, parity, socio-demographic status, etc. Results showed that prenatal V exposure was negatively associated with birth weight (β = -64.73) in female newborns and body length (β = -0.10) in male. During the fetal period, maternal V exposure was associated with decreased biparietal diameter (β = -0.91), head circumference (β = -2.96), femur length (β = -0.72) and humerus length (β = -0.64) in male. Trimester-specific analyses showed that serum V concentration in the second trimester was associated with significant reductions in intrauterine growth parameters. Besides, prenatal V exposure could down-regulate the expression of growth hormone (GH) in both maternal blood (β = -0.23) and umbilical cord blood (β = -1.66) in male fetuses, and the expression of brain derived neurotrophic factor (BDNF) in cord blood in females (β = -0.52). Our results suggest that prenatal V exposure has a gender-specific effect on fetal growth and the second trimester may be a sensitive window. The disruption of grow-related cytokines may potentially be the biological mechanism of these effects.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined