Tenidap suppresses epileptiform burst discharges in cultured hippocampal neurons by activation of Kir2.3 channels.

CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS(2019)

引用 2|浏览14
暂无评分
摘要
Background & Objective: Tenidap, a selective human inwardly rectifying potassium (Kir) 2.3 channel opener, has been reported to have antiepileptic effect in the pilocarpine temporal lobe epilepsy rat model in our previous study. However, the effect of tenidap on neurons and its relationship with the epileptiform bursting charges in neuron is still required to be explored. Methods: In this study, cyclothiazide (CTZ) induced cultured hippocampal neuron epileptic model was used to study the antiepileptic effect of tenidap and the relationship between Kir2.3 channel and the neuronal epileptiform burst. Results: Patch clamp recording showed that both acute (2h) and chronic (48h) CTZ pre-treatment all significantly induced robust epileptiform burst activities in cultured hippocampal neurons, and tenidap acutely application inhibited this highly synchronized abnormal activities. The effect of tenidap is likely due to increased activity of Kir2.3 channels, since tenidap significantly enhanced kir current recorded from those neurons. In addition, neurons overexpressing Kir2.3 channels, by transfection with Kir2.3 plasmid, showed a significant large increase of the Kir current, prevented CTZ treatment to induce epileptiform burst discharge. Conclusion: Our current study demonstrated that over activation of Kir2.3 channel in hippocampal neurons could positively interference with epileptiform burst activities, and tenidap, as a selective Kir2.3 channel opener, could be a potential candidate for seizure therapy.
更多
查看译文
关键词
Tenidap,potassium channel,Kir2.3,epilepsy,neurological disorder,epileptiform burst firing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要