Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study

Cardiovascular Ultrasound(2019)

引用 7|浏览42
暂无评分
摘要
Background Previous studies highlighted the usefulness of integrating left ventricular (LV) deformation (strain) and hemodynamic parameters to quantify LV performance. In a population sample, we investigated the anthropometric and clinical determinants of a novel non-invasive index of LV systolic performance derived from simultaneous registration of LV strain and brachial pressure waveforms. Methods Three hundred fifty-six randomly recruited subjects (44.7% women; mean age, 53.9 years; 47.5% hypertensive) underwent echocardiographic and arterial data acquisition. We constructed pressure-strain loops from simultaneously recorded two-dimensional LV strain curves and brachial pressure waveforms obtained by finger applanation tonometry. We defined the area of this pressure-strain loop during ejection as LV ejection work density (EWD). We reported effect sizes as EWD changes associated with a 1-SD increase in covariables. Results In multivariable-adjusted analyses, higher EWD was associated with age, female sex and presence of hypertension ( P ≤ 0.0084). In both men and women, EWD increased independently with augmentation pressure (effect size: + 59.1 Pa), central pulse pressure (+ 65.7 Pa) and pulse wave velocity (+ 44.8 Pa; P ≤ 0.0006). In men, EWD decreased with relative wall thickness (− 29.9 Pa) and increased with LV ejection fraction (+ 23.9 Pa; P ≤ 0.040). In women, EWD increased with left atrial (+ 76.2 Pa) and LV end-diastolic (+ 43.8 Pa) volume indexes and with E/e’ ratio (+ 51.1 Pa; P ≤ 0.026). Conclusion Older age, female sex and hypertension were associated with higher EWD. Integration of the LV pressure-strain loop during ejection might be a useful tool to non-invasively evaluate sex-specific and interdependent effects of preload and afterload on LV myocardial performance.
更多
查看译文
关键词
Echocardiography, Hypertension, Ventricular-arterial coupling, Longitudinal strain, Ejection work density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要