Theoretical approach for designing the rehabilitation robot controller.

ADVANCED ROBOTICS(2019)

Cited 3|Views29
No score
Abstract
Robot rehabilitation is now recognized as an important method for the efficient recovery. In European Project FP7 BioMot, we have discussed the potential of the robot rehabilitation and proposed the suitable process for it. In this paper, we describe the proposed rehabilitation process and create the theoretical basis for the robot rehabilitation through designing the control system and the patient model. To design the patient model, we describe the source of paralysis and motion controller separately and define the recovery function from the paralysis. In the theoretical analysis of the control system, we show that the robot motions are first adapted to the patient abnormal motions and gradually drive the patient motions to the better ones by the motion support. The singular perturbation analysis proves that the stabilities of the two different process, adaptation to the patient motions and the motion support to the better ones, as a slow motion subsystem and a fast motion subsystem, respectively. The simulation results show that the proposed control system can drive the patients to the better state depending on the patient conditions such as recovery speed and recovery potential. The proposed system can be tuned to fit to the variety of the real patient conditions when we apply it to the real applications.
More
Translated text
Key words
Robot rehabilitation strategy,theoretical approach,tacit learning,control method,singular perturbation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined