In-plane backward and zero group velocity guided modes in rigid and soft strips.

arxiv(2020)

引用 16|浏览4
暂无评分
摘要
Elastic waves guided along bars of rectangular cross sections exhibit complex dispersion. This paper studies in-plane modes propagating at low frequencies in thin isotropic rectangular waveguides through experiments and numerical simulations. These modes result from the coupling at the edge between the first order shear horizontal mode SH0 of phase velocity equal to the shear velocity V-T and the first order symmetrical Lamb mode S-0 of phase velocity equal to the plate velocity V-P. In the low frequency domain, the dispersion curves of these modes are close to those of Lamb modes propagating in plates of bulk wave velocities V-P and V-T. The dispersion curves of backward modes and the associated zero group velocity (ZGV) resonances are measured in a metal tape using noncontact laser ultrasonic techniques. Numerical calculations of in-plane modes in a soft ribbon of Poisson's ratio nu approximate to 0.5 confirm that, due to very low shear velocity, backward waves and ZGV modes exist at frequencies that are hundreds of times lower than ZGV resonances in metal tapes of the same geometry. The results are compared to theoretical dispersion curves calculated using the method provided in Krushynska and Meleshko [J. Acoust. Soc. Am. 129, 1324-1335 (2011)]. (C) 2020 Acoustical Society of America.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要