Mir-182-5p Contributes To Intestinal Injury In A Murine Model Of Staphylococcus Aureus Pneumonia-Induced Sepsis Via Targeting Surfactant Protein D

JOURNAL OF CELLULAR PHYSIOLOGY(2020)

引用 27|浏览10
暂无评分
摘要
Sepsis is a severe clinical disease, which is resulted from the excessive host inflammation response to the infection. Growing evidence indicates that Staphylococcus aureus pneumonia is a significant cause of sepsis, which can lead to intestinal injury, inflammation, and apoptosis. Studies have shown that miR-182-5p can serve as a tumor oncogene or a tumor suppressive microRNA in various cancers, however, its biological role in sepsis is still uninvestigated. Here, we reported that miR-182-5p was obviously increased in S. aureus pneumonia mice models. Loss of miR-182-5p inhibited intestinal damage and intestinal apoptosis as indicated by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, we observed the lack of miR-182-5p altered the local inflammatory response to pneumonia in the intestine. Elevated tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) levels were observed in intestinal tissue of pneumonia groups compared with the shams. Furthermore, miR-182-5p knockout (KO) pneumonia group demonstrated decreased levels of intestinal TNF-alpha and IL-6. Primary murine intestinal epithelial cells were isolated and cultured in our investigation. We exhibited downregulation of miR-182-5p repressed intestinal epithelial cells apoptosis and rescued the cell viability. Meanwhile, miR-182-5p caused elevated cell apoptosis and reduced cell proliferation. Moreover, the surfactant protein D (SP-D) binds with the bacterial pathogens and remove the pathogens and apoptotic bodies, which exhibits important roles in modulating immune responses. It was displayed in our study that SP-D was greatly decreased in pneumonia mice models. SP-D was predicted as a downstream target of miR-182-5p. These data concluded that miR-182-5p promoted intestinal injury in S. aureus pneumonia-induced sepsis via targeting SP-D.
更多
查看译文
关键词
miR-182, pneumonia, sepsis, surfactant protein D
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要