Creating impactful characters: correcting human impact accelerations using high rate IMUs in dynamic activities

ACM Transactions on Graphics (TOG)(2019)

引用 3|浏览26
暂无评分
摘要
Human motion capture using video-based or sensor-based methods gives animators the capability to directly translate complex human motions to create lifelike character animations. Advances in motion capture algorithms have improved their accuracy for estimating human generalized motion coordinates (joint angles and body positions). However, the traditional motion capture pipeline is not well suited to measure short duration, high acceleration impacts, such as running and jumping footstrikes. While high acceleration impacts have minimal influence on generalized coordinates, they play a big role in exciting soft tissue dynamics. Here we present a method for correcting motion capture trajectories using a sparse set of inertial measurement units (IMUs) collecting at high sampling rates to produce more accurate impact accelerations without sacrificing accuracy of the generalized coordinates representing gross motions. We demonstrate the efficacy of our method by correcting human motion captured experimentally using commercial motion capture systems with high rate IMUs sampling at 400Hz during basketball jump shots and running. With our method, we automatically corrected 185 jumping impacts and 1266 running impacts from 5 subjects. Post correction, we found an average increase of 84.6% and 91.1% in pelvis vertical acceleration and ankle dorsiflexion velocity respectively for basketball jump shots, and an average increase of 110% and 237% in pelvis vertical acceleration and ankle plantarflexion velocity respectively for running. In both activities, pelvis vertical position and ankle angle had small corrections on average below 2.0cm and 0.20rad respectively. Finally, when driving a human rig with soft tissue dynamics using corrected motions, we found a 143.4% and 11.2% increase in soft tissue oscillation amplitudes in basketball jump shots and running respectively. Our methodology can be generalized to correct impact accelerations for other body segments, and provide new tools to create realistic soft tissue animations during dynamic activities for more lifelike characters and better motion reconstruction for biomechanical analyses.
更多
查看译文
关键词
impacts, inertial measurement units, motion capture, soft tissue dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要