Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia.

JOURNAL OF PSYCHOPHARMACOLOGY(2019)

引用 9|浏览3
暂无评分
摘要
Background: Compelling animal and clinical studies support the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia and suggest promising pharmacological agents to ameliorate negative and cognitive symptoms of schizophrenia, including sarcosine, a glycine transporter-1 inhibitor. Aims and methods: It is imperative to evaluate the therapeutic potential of sarcosine in animal models, which provide indispensable tools for testing drug effects in detail and elucidating the underlying mechanisms. In this study, a series of seven experiments was conducted to investigate the effect of sarcosine in ameliorating behavioral deficits and the underlying mechanism in pharmacological (i.e., MK-801-induced) and genetic (i.e., serine racemase-null mutant (SR-/-) mice) NMDAR hypofunction models. Results: In Experiment 1, the acute administration of 500/1000 mg/kg sarcosine (i.p.) had no adverse effects on motor function and serum biochemical responses. In Experiments 2-4, sarcosine significantly alleviated MK-801-induced (0.2 mg/kg) brain abnormalities and behavioral deficits in MK-801-induced and SR-/- mouse models. In Experiment 5, the injection of sarcosine enhanced CSF levels of glycine and serine in rat brain. In Experiments 6-7, we show for the first time that sarcosine facilitated NMDAR-mediated hippocampal field excitatory postsynaptic potentials and influenced the movement of surface NMDARs at extrasynaptic sites. Conclusions: Sarcosine effectively regulated the surface trafficking of NMDARs, NMDAR-evoked electrophysiological activity, brain glycine levels and MK-801-induced abnormalities in the brain, which contributed to the amelioration of behavioral deficits in mouse models of NMDAR hypofunction.
更多
查看译文
关键词
Schizophrenia,NMDAR hypofunction,sarcosine,MK-801,serine racemase (SR) knockout mice
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要