Investigating The Mechanical Properties Of Gesn Nanowires

NANOSCALE(2019)

引用 11|浏览20
暂无评分
摘要
Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time the mechanical properties of GeSn nanowires (7.1-9.7 at% Sn) and assess their suitability as nanoelectromechanical (NEM) switches. Electron microscopy analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native amorphous oxide layer. Mechanical resonance and bending tests at different boundary conditions were used to obtain size-dependent Young's moduli and to relate the mechanical characteristics of the alloy nanowires to geometry and Sn incorporation. The mechanical properties of the GeSn nanowires make them highly promising for applications in next generation NEM devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要