AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment(2019)

引用 32|浏览0
暂无评分
摘要
The next generation magnetic spectrometer in space, AMS-100, is designed to have a geometrical acceptance of 100 m 2 sr and to be operated for at least ten years at the Sun–Earth Lagrange Point 2. Compared to existing experiments, it will improve the sensitivity for the observation of new phenomena in cosmic rays, and in particular in cosmic antimatter, by at least a factor of 1000. The magnet design is based on high temperature superconductor tapes, which allow the construction of a thin solenoid with a homogeneous magnetic field of 1 Tesla inside. The inner volume is instrumented with a silicon tracker reaching a maximum detectable rigidity of 100 TV and a calorimeter system that is 70 radiation lengths deep, equivalent to four nuclear interaction lengths, which extends the energy reach for cosmic-ray nuclei up to the PeV scale, i.e. beyond the cosmic-ray knee. Covering most of the sky continuously, AMS-100 will detect high-energy gamma-rays in the calorimeter system and by pair conversion in the thin solenoid, reconstructed with excellent angular resolution in the silicon tracker.
更多
查看译文
关键词
Cosmic rays,Dark matter,Antimatter,Cosmic-ray knee,High-energy gamma-rays,Multi-messenger astrophysics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要