Quantum state transfer via acoustic edge states in a 2D optomechanical array

NEW JOURNAL OF PHYSICS(2019)

引用 24|浏览5
暂无评分
摘要
We propose a novel hybrid platform where solid-state spin qubits are coupled to the acoustic modes of a two-dimensional array of optomechanical (OM) nano cavities. Previous studies of coupled OM cavities have shown that in the presence of strong optical driving fields, the interplay between the photon-phonon interaction and their respective inter-cavity hopping allows the generation of topological phases of sound and light. In particular, the mechanical modes can enter a Chern insulator phase where the time-reversal symmetry is broken. In this context, we exploit the robust acoustic edge states as a chiral phononic waveguide and describe a state transfer protocol between spin qubits located in distant cavities. We analyze the performance of this protocol as a function of the relevant system parameters and show that a high-fidelity and purely unidirectional quantum state transfer can be implemented under experimentally realistic conditions. As a specific example, we discuss the implementation of such topological quantum networks in diamond based OM crystals where point defects such as silicon-vacancy centers couple to the chiral acoustic channel via strain.
更多
查看译文
关键词
topology,silicon-vacancy,optomechanics,phononic network,quantum state transfer,solid-state physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要