Exploration Conscious Reinforcement Learning Revisited.

INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97(2019)

引用 23|浏览32
暂无评分
摘要
The Exploration-Exploitation tradeoff arises in Reinforcement Learning when one cannot tell if a policy is optimal. Then, there is a constant need to explore new actions instead of exploiting past experience. In practice, it is common to resolve the tradeoff by using a fixed exploration mechanism, such as $\epsilon$-greedy exploration or by adding Gaussian noise, while still trying to learn an optimal policy. In this work, we take a different approach and study exploration-conscious criteria, that result in optimal policies with respect to the exploration mechanism. Solving these criteria, as we establish, amounts to solving a surrogate Markov Decision Process. We continue and analyze properties of exploration-conscious optimal policies and characterize two general approaches to solve such criteria. Building on the approaches, we apply simple changes in existing tabular and deep Reinforcement Learning algorithms and empirically demonstrate superior performance relatively to their non-exploration-conscious counterparts, both for discrete and continuous action spaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要