A comprehensive comparison of the metazoan tryptophan degrading enzymes

BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS(2020)

引用 7|浏览2
暂无评分
摘要
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple 100 paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate ID01. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the Ghelix (G9th), are crucial for the high affinity/catalytic efficiency of these 'high performance' invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan 'low performance' IDOs. In human ID01, G9th is Ser(16)7, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser(167) could not be substituted by His because the human IDO1 Ser(167)His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.
更多
查看译文
关键词
Allosteric regulation,Enzyme kinetics,Indoleamine 2,3-dioxygenase,Molecular evolution,Tryptophan 2,3-dioxygenase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要