Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design.

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2019)

引用 119|浏览20
暂无评分
摘要
In medicinal chemistry programs it is key to design and make compounds that are efficacious and safe. This is a long, complex, and difficult multiparameter optimization process, often including several properties with orthogonal trends. New methods for the automated design of compounds against profiles of multiple properties are thus of great value. Here we present a fragment-based reinforcement learning approach based on an actor-critic model, for the generation of novel molecules with optimal properties. The actor and the critic are both modeled with bidirectional long short-term memory (LSTM) networks. The AI method learns how to generate new compounds with desired properties by starting from an initial set of lead molecules and then improving these by replacing some of their fragments. A balanced binary tree based on the similarity of fragments is used in the generative process to bias the output toward structurally similar molecules. The method is demonstrated by a case study showing that 93% of the generated molecules are chemically valid and more than a third satisfy the targeted objectives, while there were none in the initial set.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要