Skeletal effects of nongenomic thyroid hormone receptor beta signaling.

The Journal of endocrinology(2019)

引用 3|浏览2
暂无评分
摘要
Thyroid hormone (TH) levels increase rapidly during the prepubertal growth period in mice, and this change is necessary for endochondral ossification of the epiphyses. This effect of TH on epiphyseal chondrocyte hypertrophy is mediated via TRβ1. In addition to its traditional genomic signaling role as a transcription factor, TRβ1 can also exert nongenomic effects by interacting with other signaling molecules such as PI3K. To investigate the role of nongenomic TRβ1 signaling in endochondral ossification, we evaluated the skeletal phenotype of TRβ147F mutant mice which exhibit a normal genomic response of TRβ1 to TH, but the nongenomic response through the PI3K pathway is impaired. Using microCT, we found that 13-week-old TRβ147F mice had significantly less trabecular bone mass at three sites. Histomorphometric analyses revealed that mineralizing surface to bone surface and BFR/BS were reduced in the mutant mice. Mechanistically, we found that activation of TRβ increased Alp and Osx expression in control but not TRβ147F osteoblasts. Since canonical β-catenin signaling has been implicated in mediating nongenomic TRβ-PI3K signaling, we evaluated the effect of TRβ1 activation on β-catenin target gene expression in MC3T3-E1 pre-osteoblasts. We found that β-catenin target genes were increased, suggesting that nongenomic TRβ1-PI3K pathway modulation of β-catenin signaling may mediate TRβ1 effects on osteoblast differentiation. Together, these results suggest that TH acting through TRβ1 regulates endochondral ossification in part via nongenomic signaling in mice. Further investigation of this nongenomic mechanism of TRβ1 signaling could lead to novel therapeutic targets for treatment and prevention of osteoporosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要