Trapping Of Sub-100 Nm Nanoparticles Using Gigahertz Acoustofluidic Tweezers For Biosensing Applications

NANOSCALE(2019)

引用 29|浏览4
暂无评分
摘要
In this study, we present a nanoscale acoustofluidic trap (AFT) that manipulates nanoparticles in a microfluidic system actuated by a gigahertz acoustic resonator. The AFT generates independent standing closed vortices with high-speed rotation. Via careful design and optimization of geometric confinements, the AFT was able to effectively capture and enrich sub-100 nm nanoparticles with a low power consumption (0.25-5 mu W mu m(-2)) and rapid trapping (within 30 s), showing significantly enhanced particle-operating ability as compared to its acoustic and optical counterparts; using specifically functionalized nanoparticles (SFNPs) to selectively capture target molecules from the sample, the AFT led to the molecular concentration enhancement of similar to 200 times. We investigated the feasibility of the SFNP-assisted AFT preconcentration method for biosensing applications and successfully demonstrated the capability of this method for the detection of serum prostate-specific antigen (PSA). The AFT was prepared via a fully CMOS-compatible process and thus could be conveniently integrated on a single chip, with potential for "lab-on-a-chip" or point-of-care (POC) nanoparticle-based biosensing applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要