A low-rank method for time-dependent transport calculations

arxiv(2019)

引用 0|浏览2
暂无评分
摘要
Low-rank approximation is a technique to approximate a tensor or a matrix with a reduced rank to reduce the memory required and computational cost for simulation. Its broad applications include dimension reduction, signal processing, compression, and regression. In this work, a dynamical low-rank approximation method is developed for the time-dependent radiation transport equation in slab geometry. Using a finite volume discretization in space and Legendre polynomials in angle we construct a system that evolves on a low-rank manifold via an operator splitting approach. We demonstrate that the lowrank solution gives better accuracy than solving the full rank equations given the same amount of memory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要