Targeting Of Cd317 By The Immunotoxin Hm1.24-Eta' To Allow Immunotherapy In Glioblastoma Patients. E13560

Journal of Clinical Oncology(2019)

引用 0|浏览35
暂无评分
摘要
e13560 Background: Glioblastoma is the most common primary malignant brain tumor with a poor prognosis. CD317 (HM1.24) is a transmembrane protein and may exist in differently spliced variants. It is highly expressed on plasma cells in multiple myeloma, as well as in certain solid tumor types. While several antibody drug conjugates are already in clinical practice, small immunotoxins with a different intracellular mode of action are only established in hairy cell leukemia. The immunotoxin HM1.24-ETA’ protein is a CD317 single chain Fv (scFv) antibody fused to a truncated version of Pseudomonas aeruginosa exotoxin A (ETA’). Methods: In vivo CD317 mRNA expression in human glioma of different grades and survival probabilities of glioblastoma patients based on CD317 mRNA expression were analyzed using the database of the Cancer Genome Atlas network (TCGA). CD317 protein expression was analyzed by immunohistochemistry in a human tissue microarray (TMA). In vitro CD317 mRNA expression was assessed by RT-PCR and CD317 protein levels by flow cytometry in several human glioblastoma cell lines. A cytotoxicity assay after treatment with HM1.24-ETA’ immunotoxin was performed in human glioblastoma cell lines. Results: Data on mRNA expression from the TCGA database demonstrated, that CD317 was upregulated in human glioblastomas compared to lower grade gliomas. In the group of glioblastoma patients increased CD317 mRNA expression was associated with decreased probability of survival ( p< 0.001). CD317 protein levels correlated directly with the tumor grade of astrocytic gliomas in the TMA. CD317 was expressed heterogeneously on mRNA and protein levels in the tested cell-lines in vitro. HM1.24-ETA’ induced cytotoxicity in CD317-positive glioblastoma cells in a concentration-dependent manner. Animal experiments currently performed suggest activity in glioblastoma xenografted mice. Conclusions: These data highlight CD317 as an interesting target antigen and HM1.24-ETA’ immunotoxin as a strategy for immunotherapy of glioblastoma patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要