Aeroelastic simulation of the first 1.5-stage aeroengine fan at rotating stall

Chinese Journal of Aeronautics(2020)

引用 15|浏览10
暂无评分
摘要
A massive parallel aeroelastic simulation platform has been built to investigate the first 1.5-stage fan of an aeroengine at rotating stall. The Computational Fluid Dynamics (CFD) solver and Computational Structural Dynamics (CSD) solver are coupled directly by non-matching mesh interfaces. The unsteady rotor/stator interaction is solved by the Sliding Mesh Interface method. The original rotor blades are shrouded by the midspan shrouds. An unshrouded fan is also created to investigate the effects of the midspan shrouds. Both the shrouded fan and unshrouded fan have stable aeroelasticity at the designed state. At rotating stall, the stalled region rotates at 30% of the rotor speed on the absolute reference frame. The energy spectrum of the rotating stalled flow is measured quantitatively. It shows that the first two order excitations are much stronger than the higher order excitations. In the flow of rotating stall, the fifth backward travelling wave mode of shrouded fan is resonated by the fifth excitation of the rotational stalled flow because the rotational speed of the stalled region coincides with the modal rotational speed, while for the unshrouded fan, the first bending mode is resonated by the second excitation of the rotational stalled flow, forming two waves in the circumference of the annulus blades. At rotating stall, the vibration of the shrouded blades is still under control but the vibration of the unshrouded blades is diverged and out of control. A novel tool, i.e., resonance map, is proposed to predict the resonance. It provides a perspective to explain the effects of midspan shrouds at a theoretical level, and it would also be helpful in the structural design of blades.
更多
查看译文
关键词
Aeroelasticity,Computational Fluid Dynamics,Midspan shrouds,Rotating stall,Turbomachine blades
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要