The influence of H2O and SiO2 on the structure of silicoborate glasses

Journal of Non-Crystalline Solids(2019)

Cited 11|Views7
No score
Abstract
To understand the impact of dissolved water on structure and properties, four boron-rich glasses of molar compositions 15-x Na2O x CaO 15 SiO2 70 B2O3 (with x = 0, 7.5, 10) and 10 Na2O 15 SiO2 75 B2O3 were prepared and subsequently hydrated (up to 8 wt% H2O). Density measurements show a non-linear trend upon hydration implying large structural changes in particular at water contents <2 wt%. Near-infrared spectroscopy shows hydroxyl groups are the dominant species in all glasses upon the entire range of water content. Molecular H2O is detectable only at total water contents >2 wt%. 11B MAS NMR spectra show that the abundance of BO4 species is mainly controlled by ratio of (Na2O + CaO)/B2O3 while incorporation of water plays a minor role. Compared to borate glasses, the efficiency of formation of BO4 tetrahedra is favored by crosslinking of the network by SiO4-units. The glass transition temperatures, determined by differential thermal analysis, decreases continuously with water content due to breakage of B-O-B bonds by hydrolysis. However, compared to silicates and aluminosilicates, the effect of dissolved water is less pronounced which can be explained by weaker B-O-B bonds in comparison to Si-O-Si bonds.
More
Translated text
Key words
Water speciation,Silicoborate glasses,Infrared spectroscopy,NMR spectroscopy,High pressure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined