Carbon Nanotube Thin Film Patch Antennas For Wireless Communications

APPLIED PHYSICS LETTERS(2019)

引用 29|浏览46
暂无评分
摘要
Early work on carbon nanotube (CNT) antennas indicated that their performance could not match that of metals such as copper. However, recent improvements in fluid phase CNT processing have yielded macroscopic CNT materials with better alignment and conductivity. There is currently a gap in the literature on CNT antennas for direct experimental measurements of radiation efficiency. In this study, we conducted radiation efficiency measurements of microstrip patch antennas made of shear-aligned CNT films. We measured a radiation efficiency of 94% at 10 GHz and 14GHz, matching equivalent copper antennas. Furthermore, the minimum CNT film thickness required to match the performance of copper drops with increasing frequency due to reduced losses from the skin effect. These findings pave the way for applications of aligned CNT patch antennas in the aerospace industry, where low weight, mechanical durability, and temperature-independent performance are critically important.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要