Dynamically tunable bowtie nanoantennas based on the phase transition of vanadium dioxide

OPTICS LETTERS(2019)

引用 15|浏览17
暂无评分
摘要
The plasmonic nanoantenna has attracted intensive attention over the last decades owing to its unique optical response. Although various nanoantennas have been designed, so far very few efforts have been devoted to their dynamic tunability. Here we present a study on dynamically tunable bowtie nanoantennas integrated on a vanadium dioxide thin film with a thermal phase transition. The insulator-metal transition of vanadium dioxide changes its electric feature and permittivity; hence, the resonance of the bowtie nanoantennas is actively tuned by varying the temperature of the device. Further, by adjusting the gap of the bowtie and the edge size of the nanotriangle at a different temperature, the shift of the resonant wavelength of the nanoantenna has been found to increase for a larger triangle edge size, but less dependent on the gap width. The features suggest that VO2-integrated nanoantennas may have applications in dynamically tunable high-harmonic generation, single-molecule fluorescence enhancement, and nanolasers. (C) 2019 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要