A polymorphism in intron I of the human angiotensinogen gene (hAGT) affects binding by HNF3 and hAGT expression and increases blood pressure in mice

Journal of Biological Chemistry(2019)

Cited 5|Views8
No score
Abstract
Angiotensinogen (AGT) is the precursor of one of the most potent vasoconstrictors, peptide angiotensin II. Genome-wide association studies have shown that two A/G polymorphisms (rs2493134 and rs2004776), located at +507 and +1164 in intron I of the human AGT (hAGT) gene, are associated with hypertension. Polymorphisms of the AGT gene result in two main haplotypes. Hap-I contains the variants -217A, -6A, +507G, and +1164A and is pro-hypertensive, whereas Hap-II contains the variants -217G, -6G, +507A, and +1164G and does not affect blood pressure. The nucleotide sequence of intron I of the hAGT gene containing the +1164A variant has a stronger homology with the hepatocyte nuclear factor 3 (HNF3)-binding site than +1164G. Here we found that an oligonucleotide containing +1164A binds HNF3 beta more strongly than +1164G and that Hap-I-containing reporter gene constructs have increased basal and HNF3- and glucocorticoid-induced promoter activity in transiently transfected liver and kidney cells. Using a knock-in approach at the hypoxanthine-guanine phosphoribosyltransferase locus, we generated a transgenic mouse model containing the human renin (hREN) gene and either Hap-I or Hap-II. We show that transgenic animals containing Hap-I have increased blood pressure compared with those containing Hap-II. Moreover, the transcription factors glucocorticoid receptor, CCAAT enhancer-binding protein beta, and HNF3 beta bound more strongly to chromatin obtained from the liver of transgenic animals containing Hap-I than to liver chromatin from Hap-II-containing animals. These findings suggest that, unlike Hap-II variants, Hap-I variants of the hAGT gene have increased transcription rates, resulting in elevated blood pressure.
More
Translated text
Key words
transgenic mice,hypertension,genetics,angiotensin,single-nucleotide polymorphism (SNP),gene expression,cardiovascular disease,renin angiotensin system,vasopressor agent
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined