Improved metal allergen reactivity of artificial skin models by integration of TLR4-positive cells.

CONTACT DERMATITIS(2019)

引用 4|浏览5
暂无评分
摘要
Background: Reconstructed human epidermis (RhE) is widely used to replace animal models in order to assess the proinflammatory and allergenic effects of chemicals. Unfortunately, RhE lacks proinflammatory responsiveness for metal haptens, which are the most prevalent human contact allergens, raising concerns about its reliability for predicting skin allergens. Objectives: To investigate whether this limitation of RhE might be attributable to a lack of functional expression of Toll-like receptor 4 (TLR4), which governs proinflammatory sensitivity to nickel and cobalt. Materials and Methods: RhE, dendritic cell (DC)-containing RhE and full-thickness skin equivalent (FTSE) were compared regarding their proinflammatory responsiveness to metal allergens. Results: The incorporation of dermal fibroblasts was sufficient to confer metal sensitivity to RhE. Unlike keratinocytes, normal human fibroblasts expressed high levels of TLR4 mRNA and induced interleukin-8 expression upon stimulation with nickel or cobalt. Consistently, dermal isolates from FTSE expressed considerable amounts of TLR4 mRNA, whereas RhE or epidermis isolated from FTSE, normal human epidermis or inflamed human epidermis failed to express TLR4. Similarly, co-culture with TLR4-positive DCs bestowed RhE with proinflammatory responsiveness to metals. Conclusion: Our data suggest that FTSE or DC/RhE co-culture models can circumvent the shortcomings of RhE assays, and combine the benefits of complex and monoculture-based test systems in a single assay.
更多
查看译文
关键词
dendritic cell,innate immune response,metal allergy,reconstructed human skin,TLR4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要