Stokes Shift and Specific Fluorescence as Potential Indicators of Organic Matter Hydrophobicity and Molecular Weight in Membrane Bioreactors.

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2019)

引用 36|浏览24
暂无评分
摘要
Hydrophobicity and molecular weight (MW) are two fundamental properties of dissolved organic matter (DOM) in wastewater treatment systems. This study proposes fluorescence Stokes shift and specific fluorescence intensity (SFI) as novel indicators of hydrophobicity and MW. These indicators originate from the energy gap and photon efficiency of the fluorescence process and can be readily extracted from a fluorescence excitation-emission matrix (EEM). The statistical linkages between these indicators and hydrophobicity/MW were explored through investigation of DOM across 10 full-scale membrane bioreactors treating municipal waste- water. Stokes shift was found to exhibit a general rule among the hydrophobicity components in the order of hydrophilic substances (HIS) < hydrophobic acids (HOA) < hydrophobic bases (HOB). The Stokes shift of 1.2 mu m(-1) is a critical border, above which the relative fluorescence correlated significantly with the HOA-related content (Pearson's r = 0.8). With regard to MW distribution (<1, 1-10, 10-100, and >100 kDa), SFI was found to be the most sensitive to the change of MW of <1 kDa proportion, especially at the excitation/emission wavelengths of 200-320/310-550 nm (r > 0.9). Hydrophobicity-related pi conjugation and MW-dependent light exposure might be responsible for the correlations. These fluorescence indicators may be useful for convenient monitoring of DOM in wastewater treatment systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要