Chrome Extension
WeChat Mini Program
Use on ChatGLM

Targeting Atgl To Rescue Bscl2 Lipodystrophy And Its Associated Cardiomyopathy

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY(2020)

Cited 26|Views44
No score
Abstract
Mutations in the BSCL2 gene underlie human type 2 Berardinelli-Seip congenital lipodystrophy (BSCL2) disease. Global Bscl2(-/-) mice recapitulate human BSCL2 lipodystrophy and results in the development of insulin resistance and hypertrophic cardiomyopathy. The pathological mechanisms underlying the development of lipodystrophy and cardiomyopathy in BSCL2 are controversial. Here we report that Bscl2(-/-) mice develop cardiac hypertrophy because of increased basal IGF1 receptor-mediated (IGF1R-mediated) PI3K/AKT signaling. Bscl2(-/-) hearts exhibited increased adipose triglyceride lipase (ATGL) protein stability and expression causing drastic reduction of glycerolipids. Excessive fatty acid oxidation was overt in Bscl2(-/-) hearts, partially attributing to the hyperacetylation of cardiac mitochondrial proteins. Intriguingly, pharmacological inhibition or genetic inactivation of ATGL could rescue adipocyte differentiation and lipodystrophy in Bscl2(-/-) cells and mice. Restoring a small portion of fat mass by ATGL partial deletion in Bscl2(-/-) mice not only reversed the systemic insulin resistance, but also ameliorated cardiac protein hyperacetylation, normalized cardiac substrate metabolism, and improved contractile function. Collectively, our study uncovers pathways underlying lipodystrophy-induced cardiac hypertrophy and metabolic remodeling and pinpoints ATGL as a downstream target of BSCL2 in regulating the development of lipodystrophy and its associated cardiomyopathy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined