MoS 2 -loaded G-quadruplex molecular beacon probes for versatile detection of MicroRNA through hybridization chain reaction signal amplification.

Talanta(2019)

引用 40|浏览10
暂无评分
摘要
A molecular beacons (MBs) loaded on molybdenum disulfide (MoS2) nanosheets as fluorescence probes for sensitive and versatile detection of microRNAs (miRNAs) through hybridization chain reaction (HCR) has been designed. MoS2 was used as a adsorbent to capture the MBs and a selective fluorescence quencher to reduce the background signal. In the absence of miRNAs, HCR could not be triggered due to the stability of MB probes. The probes attached to the MoS2 surface, efficiently quenching fluorescence of the G-quadruplex/Thioflavin T. However, the presence of target miRNAs triggers the HCR process to generate large amount of HCR products. Meanwhile, the HCR products of long nanowires chain with abundant G-quadruplexes could not be adsorbed on the surface of MoS2, and therefore detach from the MoS2. Consequently, Thioflavin T could be embedded in G-quadruplexes and produced strong fluorescence signal. This fluorescence emission signal could achieve detection of miRNA as low as 4.2 pM and a wide linear ranges from 0.1 to 100 nM. In addition, a versatile fluorescence probe has been developed for detection of miRNA-21 by changing the miRNA-recognition domain of MB. Thus, the fluorescent probe would be a potential alternative tool for biomedical research and clinical molecular diagnostics.
更多
查看译文
关键词
Low-background,MoS2 nanosheets,G-quadruplex,Hybridization chain reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要