Quark Flavour Dependence of the Shear Viscosity in a Quasiparticle Model

Physical Review D(2019)

引用 17|浏览0
暂无评分
摘要
We study the temperature-dependence of the shear viscosity to entropy density ratio in pure Yang-Mills theory and in QCD with light and strange quarks within kinetic theory in the relaxation time approximation. As effective degrees of freedom in a deconfined phase we consider quasiparticle excitations with quark and gluon quantum numbers and dispersion relations that depend explicitly on the temperature. The quasiparticle relaxation times are obtained by computing the microscopic two-body scattering amplitudes for the elementary scatterings among the quasiparticles. For pure Yang-Mills theory we show that the shear viscosity to entropy density ratio exhibits a characteristic non-monotonicity with a minimum at the first-order phase transition. In the presence of dynamical quarks the ratio smoothens while still exhibiting a minimum near confinement. Furthermore, there is a significant increase of the shear viscosity to entropy density ratio in QCD resulting from the quark contributions. This observation differs from previously reported estimates based on functional methods but is in line with perturbative QCD expectations at higher temperatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要