Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: Functional enzymes and antioxidant defense mechanism.

Chemosphere(2019)

引用 23|浏览76
暂无评分
摘要
Hydrolyzed polyacrylamide (HPAM) is the most widely used water-soluble linear polymer with high molecular weight in polymer flooding. Microbiological degradation is an environment-friendly and effective method of treating HPAM-containing oilfield produced water. In this study, a strain SZK-5 that could degrade HPAM was isolated from soil contaminated by oilfield produced water. Based on morphological, biochemical characteristics and 16S rDNA sequence homology analysis, the strain was identified as Bacillus megaterium. The biodegradation capability of strain SZK-5 was determined by incubation in a mineral salt medium (MSM) containing HPAM under different environmental conditions, showing 55.93% of the HPAM removed after 7 d of incubation under the optimum conditions ((NH4)2SO4 = 1667.9 mg L-1, temperature = 24.05 °C and pH = 8.19). Cytochrome P450 (CYP) and urease (URE) played significant roles in biological carbon and nitrogen removal, respectively. The strain SZK-5 could resist the damages caused by oxidative stress given by crude oil and HPAM. To our knowledge, this is the first report about the biodegradation of HPAM by B. megaterium. These results suggest that strain SZK-5 might be a new auxiliary microbiological resource for the biodegradation of HPAM residue in wastewater and soil.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要