Progress in Symmetric and Asymmetric Superlattice Quantum Well Infrared Photodetectors

ANNALEN DER PHYSIK(2019)

引用 7|浏览32
暂无评分
摘要
Herein, two challenges are addressed, which quantum well infrared photodetectors (QWIPs), based on III-V semiconductors, face, namely: photodetection within the so-called "forbidden gap", between 1.7 and 2.5 microns, and room temperature operation using thermal sources. First, to reach this forbidden wavelength range, a QWIP which consists of a superlattice structure with a central quantum well (QW) with a different thickness is presented. The different QW in the symmetric structure, which plays the role of a defect in the otherwise periodic structure, gives rise to localized states in the continuum. The proposed InGaAs/InAlAs superlattice QWIP detects radiation around 2.1 microns, beyond the materials bandoffset. Additionally, the wavefunction parity anomaly is explored to increase the oscillator strength of the optical transitions involving higher order states. Second, with the purpose of achieving room temperature operation, an asymmetric InGaAs/InAlAs superlattice, in which the QW with a different thickness is not in the center, is used to detect infrared radiation around 4 microns at 300 K. This structure operates in the photovoltaic mode because it gives rise to states in the continuum which are localized in one direction and extended in the other, leading to a preferential direction for current flow.
更多
查看译文
关键词
infrared photodetectors,parity anomaly,quantum wells,quantum well infrared photodetectors,room temperature,superlattices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要